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Abstract

The Kinetic Tandem fusion plasma confinement concept is a member of the class
of “open” magnetic confinement systems whose magnetic topology is that of a tube of
magnetic flux open at both ends. In open-ended systems the central problem is that of
limiting the rate of plasma losses out the ends. In a conventional tandem mirror system
end-plugging is accomplished by the generation of positive potential barriers within
special short mirror cells located at each end of a long central confinement cell. The
kinetic tandem concept accomplishes the same end result by employing dynamic effects,
but without the necessity of special end cells. The field employed in the kinetic tandem
is a simple axially symmetric solenoidal field whose intensity tapers to low values at the
ends. Since the field line curvature is everywhere positive such a field is stabilizing for
MHD interchange modes. Into each end are injected ion beams that are aimed nearly
parallel to the field line direction. The ions from these beams then are radially
compressed, stopped, and reflected back by magnetic mirror action in climbing up the
magnetic gradient. In this way ion density peaks are formed between which the plasma is
to be confined. As in the original tandem mirror concept, a localized ambipolar potential
arises to maintain quasi-neutrality between the ions and the electrons. Provided the
plasma density in the plugs is higher than that of the plasma contained between them the
ions of the central plasma will be confined between the plugs by the positive potential
barriers represented by the plugs. The plasma electrons will at the same time be confined
by the overall positive potential of the plasma with respect to the ends. In this report
some analytical calculations of the formation of the plugs will be given. These
calculations were then confirmed and extended by computer simulations, using the LLNL
code ICEPIC. Within the assumptions made in the theoretical calculations and in the code
representation, fusion-relevant plug plasma parameters were achieved, and no evidence of
unstable behavior was detected in the simulations.



I) Introduction
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The kinetic tandem idea has been presented in previous papers [1,2]. It represents a
method of creating a confinement system that mimics that of a conventional tandem
mirror, but in a magnetic field of a “linear-collider” type, that is, an axially symmetric
solenoidal field that is weakened at each end. In this section we will recapitulate the
description of the kinetic tandem.

The tandem mirror concept involves "plugging" the end leakage of an open-ended field
by creating localized regions of positive potential at each end of the system. In the
original version of the tandem mirror [3,4] the plugging potentials were created by taking
advantage of the ambipolar potential that arises spontaneously in open-ended systems in
equalizing the rate of loss of ions and electrons. From the quasi-neutrality constraint in
the plasma there arises the familiar Boltzmann-like expression for the potential difference,
along the magnetic field lines, between two regions of the plasma at differing densities:

| ne(2)

Thus in the original tandem-mirror concept small mirror cells, one at each end of the
central mirror cell, were maintained at a higher plasma density than the plasma in the
central cell, thereby creating a positive potential barrier inhibiting the escape of ions from
the central cell. If the length of these cells was sufficiently short compared to that of the
central cell the power required to maintain the plasmas in the plugs would be small
compared to the fusion power generated in the central cell.

In the kinetic tandem concept there are no end mirror cells within which the higher-
density plasma is maintained. Instead, a region of localized higher-density plasma near
each end is to be created by the compression associated with the converging field lines of
the solenoidal magnetic field. Ion beams are to be injected, near the ends of the long
solenoid, nearly parallel to the direction of the field lines. Moving up the magnetic
_ gradient these ions are compressed inward and eventually slowed to a stop and reflected
by the field as it approaches its maximum value in the central, “confinement cell,” region.
Given a sufficiently high electron temperature of the lower-density plasma in the central
region, a plugging potential adequate to contain the ions of that plasma will arise,
inhibiting their escape. Again, if the plasma column between the plugging potentials is
sufficiently long the fusion power released in the central region will be large enough
compared to the power required to maintain the plugging potentials to yield a net useful
power output.

The plugs of any tandem mirror system must perform two functions: The first is to
provide a potential barrier that inhibits the escape of the ions of the central plasma. The
second, and equally important, function is to balance the outward-directed parallel
pressure of that plasma by an equal ingoing momentum flux. The mechanism for coupling
this force is the positive gradient of the electric potential acting on the ions as they enter



the plugs. In the conventional tandem this momentum flux is taken up by the uVB
(product of magnetic moment and gradient B) force on the plug ions as they are reflected
by the end mirrors of the plug cells. In the kinetic tandem this pressure-balancing
requirement must be satisfied by the inward momentum flux associated with the injected
and reflected ions.

The two constraints just described - sufficiently high ion density to. build the plug
region, plus a sufficient inward momentum flux to balance the parallel pressure of the
confined plasma - must be satisfied within the additional constraints of maintaining the
stability of the plug ions against two MHD modes. The first of these is the firehose
mode, previously discussed, where the limitation on ion density occurs near the point of
injection. The second MHD mode that must be considered is the so-called “mirror”
mode, where the region of concern is the density maximum of the mirror-reflected plug
ions.

An approximate evaluation of the first two constraints - parallel pressure and plug ion
density - may be obtained from simple mirror-physics relations. Ions of mass M;(kg),

injected at a current density j, (ions/mz-sec.) at a velocity of vy (m/sec.) and at an angle to

the direction of the magnetic field of 6y(radians) produce an inwardly directed axial

momentum flux that is, at first, increased by the convergence of the field lines, and then
decreased as their perpendicular component of energy is increased through mirror action.
As a result the parallel pressure reaches its maximum value at a field ratio that is 2/3 of
that where reflection occurs, i.e. at a field ratio given by the relationship:

B(z) _ 2 :
B(0) - 3sin2(8,) @)

At this point the parallel pressure has the magnitude:
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At the maximum point the ion density from these ions has been compressed up to the
value:
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For sufficiently small values of the injection angle and for ion source current densities
of the order of those achieved experimentally [5], both the parallel pressure and the
compressed ion density reach levels of practical interest. In what follows we will present
more detailed evaluations of these quantities.



IT) Analytic Calculation of Plug Parameters

Prior to the calculations made using a plasma simulation code, theory-based
calculations were performed of the plasma properties and the parameters of the plugs of a
tandem mirror. We will present the results of these calculations in the material in this and
the next section.

To obtain a lowest-order answer to the density compression and the parallel pressure
increase caused by the injection of a beam of ions into an increasing magnetic field the
classical technique of employing a distribution function written in terms of the invariants

of motion, namely, the specific energy, € = v2/2; and the specific magnetic moment, v =
vi/2 was employed. The angular dependence of the ion source function, s(9) was chosen

to be representative of realistic ion sources, while at the same time being integrable in
terms of simple functions. The form chosen was:

s(8) = syl sin?(8) - sin2(0,)]? [ sin(8,) - sin2(Q) ]2 ®)

Here 0, and 6, define the angular limits between which the ions are injected, with a
gaussian-like current vs angle distribution as defined by the equation. A plot of this
distribution function for typical values of the injection angle and angular width is shown
in Figure 1. ‘

flverage Injectlon angte In degrees = 1.75
Rnguliar spread in degrees = ,S0
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Figure 1: Source Angular Distribution

Inserting this distribution function into the expression for the density, integrating, and
normalizing to the density at the position of the source results in plots of this density
ratio as a function of the magnetic field intensity.



We first consider the case where the beams are monoenergetic. (This requirement
is not a necessary one, and will be relaxed in later examples). For this first case the
integrals to be performed to determine the density amplification caused by magnetic
compression, and the parallel and perpendicular temperatures, are the following:

Density: n(B) = V2= BJ Jg(v,e)(s - vB)12 dvde (6)
. v

€

Parallel pressure: P, = 2 V2nB Ig(v,e)(e - vB)2 dvde )
v _
3

Perp. pressure: P, = V2 n B2 J J.g(v,e)v(e ~-vBy12dvde  (8)
v
€

For this case the distribution function, g(v,€), is written as:

g(v,e) = f(e)s[u(v,e)l,

with  f(g) = (€ —gy),
and P = cos(@), sothatp? = 1-vB/e.

. With the previously chosen functional form for s(it) it can now be written as:

s(w) = sylcos¥(8,) - (1 - vBy/e)][(1 - VB/e) - cosz-(ez)],

with the v integration limits: v | =sin?(®,)(€/By)and v, = sin%(8,)(e/B).



Here B, is the value of B at the launching point of the injected ions.

Making the change of variables: u = (g - vB) the integrations may be performed in
terms of simple quadratures, finding for the particle density as a function of magnetic
field, n(B), the following lengthy expression:
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Our interest in the density variation with magnetic field is to determine the ratio of
the peak particle density reached (following magnetic compression) to the input particle
density at the mouth of the ion sources, i.e., we wish to determine n(B)/n(B,), the

denominator being determined by setting B = B, in equation 9. The density ratio
determined in this way must, however, be multiplied by a factor of two, to take into
account that at every point beyond the ion source there exists a returning flux of particles,

equal in magnitude and opposite in direction, as a result of the injected particles being
reflected by mirror action.



For practically realizable source angular spreads the particle density compression
ratios can be quite large, of order 104. Figure 2 is a plot of density compression ratio vs
magnetic field ratio, for a case in which the angular spread, (0,-9,),is 0.5° and the mean

injection angle, (8, + 8,)/2, is 1.75° . For this example case the peak density compression
ratio is greater than 6000.

ton density ratio = 6085.

At sognstic field ratio = 960.
Meon in|. angle = 1.75 degrees
Beom ang. spread = .50 degrees

Figure 2: Density compression ratio vs magnetic field ratio

In a similar manner the parallel and perpendicular compression ratios can be
determined, by evaluating the integrals in equations 7 and 8. For the parallel pressure we

then have:

Ppu(B) = 2V2 nsosj’z{Hl - Hy) (10)
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In these equations the constants A, 5, and C, ,, , etc. are defined as in equation 9.

A plot of ppar(B) for the same source angular parameters as those in Figure 2 is
shown in Figure 3. Note that Ppar peaks at a lower magnetic field value than does n(B), as
expected from the earlier discussion of equation 3.
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Figure 3: Parallel pressure ratio ys magnetic field ratio

The corresponding equations for the perpendicular pressure are as follows:
3/2
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A plot of pperp(B) is shown in Figure 4, for the same set of source angular

parameters as those for the plots of Figures 2 and 3. Note that the pressure ratio reaches
very high values, as a consequence of the combination of magnetic compression and the
tipping of the velocity vectors of the ions from nearly parallel to the field lines to near-
perpendicularity.
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Figure 4: Perpendicular pressure ratio vs magnetic field ratio

The above analytical results for the density and pressure ratios can be used to
determine a lowest-order calculation of the compressed values of these quantities, given
the particle density at the sources. In a previous paper [2] these results were also
incorporated into the stability criteria for the “firechose” and the “mirror” MHD modes to
determine the limitations on the compressed densities and pressures that these modes
imply, for given values of the source current density and intensity of the confining
magnetic field. In this paper it was shown that fusion-relevant plasma parameters could
be achieved at practically achievable levels of magnetic field and source current density.

In the application of these results to the generation of plugging potentials where
the potential to be achieved is not negligible compared to the kinetic energy of the injected
ions it is necessary to incorporate, self-consistently, the effect of that potential on the
injected ions in modifying their orbits. In the next section we will describe a next-order
calculation of this effect, using an iterative calculational method. However, the
complexity of the problem is such that it requires the use of computer simulation
methods to investigate the problem in greater depth. In a later section the results of such
simulations will be presented and compared with those of the analytical approach.

IIT) Self-Consistent Calculation of Plug Densities by an Iterative Method

To calculate the compressed density of injected ions, including the effect on their
orbits of an ambipolar potential, the integral expression for the density, equation 6, was
first modified to include a potential, ¢(B), i.e., varying spatially through its dependence
on B. Through a coordinate transformation the integral was put in a form that was
convenient for numerical integration. Then, setting the potential initially equal to zero,



the density ratio, n(B)/n(B,, was calculated. First assuming a background electron
temperature such that the ratio of the electron temperature to the injected ion energy is
small, i.e., (kT/W,) <<1, ¢(B) was calculated, using the Boltzmann relationship,

Equation 1. The density was then recalculated, forming the initial state for the next
iteration. In the next iteration the electron temperature was increased incrementally, and a
new density profile was calculated. This process was repeated until the desired ratio of
electron temperature to ion energy was reached. As long as this ratio remained reasonably
small it can be expected that the results would be an accurate representation of the self-
consistent density and potential profiles. One clear limitation of the method is that it can
only give predictions on the rising slope of n(B), sinee it requires that the potential be a
single-valued function of B. This limitation is not present in the particle-in-cell computer
simulations that are reported in a later section.

The modified form of Equation 6 is given by Equation 12 below:

nB) = V21 B | [g(ve)e- 0(B)- vBy 12 dvde (12)
A"
€

Making the transformations and change of variables: € = g, = 1 (normalized
monoenergetic beams), normalizing the magnetic field by setting Bj = 1, and defining the

dimensionless variables, x = B/ B, and y(x) = ¢(B)/e, and making the substitution u =1 -
y(X) - vx, Equation 12 then takes a singularity-free form suitable for numerical integration:

b
® = 2W2ng, [foosioy- [1- L[4 0], coggfan a1y
a

Lower limit: a=[1 - y(x) - sin2(62)]”2; upper limit: b= [1 - y(x) - sin2(61)]1/2.
‘The integral for n(B,)) (where ¢ = 0) then takes the much simpler form:

cos(el)

n(By=2V2ng, f [cosz(e,) -u2]2 [u2 ; cosz(ez)]zdu (18)

cos(92)
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As a check on the results obtained with the analytic formulation, Equation 10,
Equation 13 was numerically integrated with the electron temperature set equal to zero
and with the same source angular parameters as those previously used. The two results
were found to agree within the accuracy of the (trapezoidal rule) numerical integration
algorithm that was employed. Following this the iterative method described above was
used to determine the density distribution, as modified by the potentials associated with
an electron temperature equal to 2.5 percent of the ion energy. For this case the peak
potential was of order 2.5 log(6000) = 2.5 x 8.7 = 22 percent of the ion energy. The
effect of this potential on the particle density was to form a “virtual anode” that, owing
to the repulsion of the injected ions that it caused, moved the density peak back to
somewhat lower magnetic field values. This effect is shown by the two curves plotted o
Figure §. '

8000

6000 1

4000 1

Density Ratio

2000

0 500 1000 1500
Magnetic Field Ratio

Figure 5: Effect of Self-Consistent Potential on Density Peak

In a practical application of the Kinetic Tandem advantage could be taken of the
“virtual anode” effect to further enhance the density peak, and with it the plugging
potential. For example, as the virtual anode built up in time the ion energies could be
changed from a monoenergetic one to one chosen to maximize the number of ions turned
around near the density peak, thus further amplifying the potential.

The effect of the virtual anode, including an effect of changing the ion energies,
was also demonstrated in the computer simulations described in the next section.

IV) Computer Simulation Studies of the Plug Density

The computer simulations were performed using a modified version of an existing
LLNL code. This code is an electrostatic 1-D particle-in-cell simulation code, ICEPIC

(Inertial Confinement Electrostatic Particle In Cell), developed originally by Richard

11



Procassini. This code allows the input of several species of ions with differing charges
and masses. Electrons can be treated either as particles or as a Boltzmann fluid. The axial
motion of the particles is under the influence of pVB forces and forces from electrostatic
fields of space-charge origin. An arbitrarily varying B(z) can be employed, read in from
an input file. The code also has a particle-particle collision algorithm, a feature that was
not required for the present problem because the single-bounce nature of the orbits of the
ions rendered collisional effects unimportant. In the runs that were made the Boltzmann
electron assumption was employed to determine potentials, as was the case with the
iterative computational technique described in the previous section.

Summarizing the runs that were made using the simulation code, they were the
following:

1. Proof-of-principle simulations: Injection of monoenergetic ions at small angles
between 1.5 and 2.0 degrees into an axially increasing magnetic field, to compare

the code results with those obtained by the analytic method.

In the runs in which kT, = 0, a steady-state was achieved in approximately
one bounce time. The density ratio achieved, n(B)/n(Bg) = 6000 at B/B,, = 980,
agrees well with the analytical results for the same case.

In subsequent runs, where kT, was set equal to 6 percent of the energy of

the injected ions, the location of the peak moved back down the magnetic gradient
to B/B, = 550, behaving in the same manner as was observed in the iterative

computations described in the previous section, but extending this regime to higher
electron temperatures.

2. Time-dependent injection-velocity simulations: Starting with the same conditions

as in the finite electron-temperature run in (1), the ion velocity was first increased
by a factor 1.15. The ion velocity was then increased by another factor of 1.07,
so that the kinetic energy of the ions was then about 1.5 times the original ion
energy.

Following the first increase in ion velocity (factor of 1.15) the peak
density moved out from B/B, =550 to B/B, = 850.

With the second increase in velocity (factor of 1.07) the peak density
moved out to B/B,, = 1050.

These runs confirmed and extended the “virtual anode” behavior seen in
the iterative calculations of the previous section. As a result of this effect the
maximum perpendicular velocity of the ions in the runs in (1) involving finite
electron temperature was reduced to about 75 percent of that at injection.
Following the second increase in ion velocity at injection the maximum
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perpendicular velocity recovered to a value slightly larger than that seen in the
first, zero electron temperature, runs.

3. Two-beam runs: In these runs two beams were used with different energies, but
the same initial pitch-angle distribution.

In the first run, with kT, = 0, the turning points of the two beams exactly
overlapped, owing the fact that they had the same initial pitch-angle distribution.

In the next run a step-function increase in the electron temperature, to
kT, = 6 percent of the mean ion kinetic energy, was imposed. As a result the

perfect overlapping of the turning points was perturbed, producing a wider
density distribution and, as a consequence, a wider potential peak.

In all of the above runs there was no evidence of unstable behavior, suggesting that
the plugs of the kinetic tandem should not be subject to instabilities of electrostatic origin.
Another observation about the code and its behavior is that it behaved in a robust manner
to step-function changes in the parameters. This result again suggests that the kinetic
tandem plug formation process should be a stable one, even when the possibly
destabilizing effects on the ion orbits of the ambipolar potential is present.

However, it should be said that to use plasma simulation methods to achieve a
definitive proof of the stability of the plug formation process would likely require the use
of a 3-D code that included magnetic and well as electrostatic effects of the kind that
would be present in a real situation. Considering, however, that in the analytical
computations the stability criteria for both the firehose and the mirror instabilities were
shown to be satisfied for fusion-relevant plasma parameters, it is not unreasonable to
assume that stable regimes would also be found in 3-D simulations.

V) Conclusion

Analytical formula for the calculation of the parameters of the plugs (ion-density
peaks) in a kinetic tandem system have been presented and compared with comiputer
simulations. Close agreement between the two approaches was found in the case where
the ambipolar potential of the plug is small compared to the ion energy. Using the code,
these results were extended to include the effects of a substantial “virtual anode” formed
by the compressed and reflected ions and a population of electrons with kinetic energies
several percent of the injected ion energies. In the computer simulations no evidence of
unstable behavior of electrostatic origin was seen, and, provided criteria based on MHD
theory are satisfied, the plugs should also be stable against both the firehose and mirror
instabilities. ’
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